package com.vista; import com.vista.ChineseSpliter; import com.vista.ClassConditionalProbability; import com.vista.PriorProbability; import com.vista.TrainingDataManager; import com.vista.StopWordsHandler; import java.util.ArrayList; import java.util.Comparator; import java.util.List; import java.util.Vector; /** * 朴素贝叶斯分类器 */ public class BayesClassifier { private TrainingDataManager tdm;//训练集管理器 private String trainnigDataPath;//训练集路径 private static double zoomFactor = 10.0f; /** * 默认的构造器,初始化训练集 */ public BayesClassifier() { tdm =new TrainingDataManager(); } /** * 计算给定的文本属性向量X在给定的分类Cj中的类条件概率 * <code>ClassConditionalProbability</code>连乘值 * @param X 给定的文本属性向量 * @param Cj 给定的类别 * @return 分类条件概率连乘值,即<br> */ float calcProd(String[] X, String Cj) { float ret = 1.0F; // 类条件概率连乘 for (int i = 0; i <X.length; i ) { String Xi = X[i]; //因为结果过小,因此在连乘之前放大10倍,这对最终结果并无影响,因为我们只是比较概率大小而已 ret *=ClassConditionalProbability.calculatePxc(Xi, Cj)*zoomFactor; } // 再乘以先验概率 ret *= PriorProbability.calculatePc(Cj); return ret; } /** * 去掉停用词 * @param text 给定的文本 * @return 去停用词后结果 */ public String[] DropStopWords(String[] oldWords) { Vector<String> v1 = new Vector<String>(); for(int i=0;i<oldWords.length; i) { if(StopWordsHandler.IsStopWord(oldWords[i])==false) {//不是停用词 v1.add(oldWords[i]); } } String[] newWords = new String[v1.size()]; v1.toArray(newWords); return newWords; } /** * 对给定的文本进行分类 * @param text 给定的文本 * @return 分类结果 */ @SuppressWarnings("unchecked") public String classify(String text) { String[] terms = null; terms= ChineseSpliter.split(text, " ").split(" ");//中文分词处理(分词后结果可能还包含有停用词) terms = DropStopWords(terms);//去掉停用词,以免影响分类 String[] Classes = tdm.getTraningClassifications();//分类 float probility = 0.0F; List<ClassifyResult> crs = new ArrayList<ClassifyResult>();//分类结果 for (int i = 0; i <Classes.length; i ) { String Ci = Classes[i];//第i个分类 probility = calcProd(terms, Ci);//计算给定的文本属性向量terms在给定的分类Ci中的分类条件概率 //保存分类结果 ClassifyResult cr = new ClassifyResult(); cr.classification = Ci;//分类 cr.probility = probility;//关键字在分类的条件概率 System.out.println("In process...."); System.out.println(Ci ":" probility); crs.add(cr); } //对最后概率结果进行排序 java.util.Collections.sort(crs,new Comparator() { public int compare(final Object o1,final Object o2) { final ClassifyResult m1 = (ClassifyResult) o1; final ClassifyResult m2 = (ClassifyResult) o2; final double ret = m1.probility - m2.probility; if (ret < 0) { return 1; } else { return -1; } } }); //返回概率最大的分类 return crs.get(0).classification; } public static void main(String[] args) { String text = "微软公司提出以446亿美元的价格收购雅虎中国网2月1日报道 美联社消息,微软公司提出以446亿美元现金加股票的价格收购搜索网站雅虎公司。微软提出以每股31美元的价格收购雅虎。微软的收购报价较雅虎1月31日的收盘价19.18美元溢价62%。微软公司称雅虎公司的股东可以选择以现金或股票进行交易。微软和雅虎公司在2006年底和2007年初已在寻求双方合作。而近两年,雅虎一直处于困境:市场份额下滑、运营业绩不佳、股价大幅下跌。对于力图在互联网市场有所作为的微软来说,收购雅虎无疑是一条捷径,因为双方具有非常强的互补性。(小桥)"; BayesClassifier classifier = new BayesClassifier();//构造Bayes分类器 String result = classifier.classify(text);//进行分类 System.out.println("此项属于[" result "]"); } }
评论