选择题、程序问答题及综合练习题目录
一、硬件 2
二、进制与编码 7
三、软件与操作系统 13
四、信息安全 15
五、网络 17
六、数据结构与算法 22
七、排列组合 27
八、综合
二、进制与编码
四种常用的数制及它们之间的相互转换:
十进制数转换为二进制数、八进制数、十六进制数的方法:二进制数、八进制数、十六进制数转换为十进制数的方法:按权展开求和法 1.二进制与十进制间的相互转换:(1)二进制转十进制 方法:“按权展开求和” 例: (1011.01)2 =(1×23+0×22+1×21+1×20+0×2-1+1×2-2 )10 =(8+0+2+1+0+0.25)10 =(11.25)10 规律:个位上的数字的次数是0,十位上的数字的次数是1,......,依奖递增,而十 分位的数字的次数是-1,百分位上数字的次数是-2,......,依次递减。 注意:不是任何一个十进制小数都能转换成有限位的二进制数。 (2)十进制转二进制 · 十进制整数转二进制数:“除以2取余,逆序排列”(短除反取余法) 例: (89)10 =(1011001)2 2 892 44 ……12 22 ……02 11 ……02 5 ……12 2 ……12 1 ……00 ……1· 十进制小数转二进制数:“乘以2取整,顺序排列”(乘2取整法) 例: (0.625)10= (0.101)2 0.625 X 2 1.25 1 X 2 0.5 0 X 2 1.0 1 2.八进制与二进制的转换:二进制数转换成八进制数:从小数点开始,整数部分向左、小数部分向右,每3位为一组用一位八进制数的数字表示,不足3位的要用“0”补足3位,就得到一个八进制数。 八进制数转换成二进制数:把每一个八进制数转换成3位的二进制数,就得到一个二进制数。 例:将八进制的37.416转换成二进制数: 3 7 . 4 1 6011 111 .100 001 110即:(37.416)8 =(11111.10000111)2 例:将二进制的10110.0011 转换成八进制: 0 1 0 1 1 0 . 0 0 1 1 0 0 2 6 . 1 4 即:(10110.011)2 = (26.14)8 3.十六进制与二进制的转换:二进制数转换成十六进制数:从小数点开始,整数部分向左、小数部分向右,每4位为一组用一位十六进制数的数字表示,不足4位的要用“0”补足4位,就得到一个十六进制数。 十六进制数转换成二进制数:把每一个八进制数转换成4位的二进制数,就得到一个二进制数。 例:将十六进制数5DF.9 转换成二进制: 5 D F . 9 0101 1101 1111 .1001 即:(5DF.9)16 =(10111011111.1001)2 例:将二进制数1100001.111 转换成十六进制: 0110 0001 . 1110 6 1 . E 即:(1100001.111)2 =(61.E)16 注意:以上所说的二进制数均是无符号的数。这些数的范围如下表:
评论